Software Defined Networking and OpenFlow

Jeffrey Dalla Tezza and Nate Schloss

Agenda

- What is SDN
- SDN Today
- What is OpenFlow
- Why OpenFlow
- What's next for SDN
- Our OpenFlow Demonstration

Software Defined Networking

- Wikipedia defines it with three characteristics:
 - An approach to building computer networks that separates and abstracts elements of these systems.
 - Allows system administrators to quickly provision network connections on the fly instead of manually configuring policies.
 - Allows network administrators to have
 programmable central control of network
 traffic.

Software Defined Networking

- Those are the goals for SDN, but it is really just programmable control of networking devices
- Current models
 - JunOS by Juniper
 - IOS by Cisco
 - Application Fluent Network by Alcatel-Lucent
 - OpenFlow
- All of those give some degree of programmatic control, but they all have trade offs

Current SDN Technologies

• IOS by Cisco and JunOS by Juniper

Current SDN Technologies

- Other companies also have proprietary solutions
 - Application Fluent Network by Alcatel-Lucent
 - Linerate systems
- Since these all require specific hardware large scale adoption is unlikely

Current SDN Technologies

• OpenFlow by the Open Networking Alliance

administrators to have programmable central control of network traffic.

What is OpenFlow

- OpenFlow is an open specification by the Open Networking Foundation for connecting to and controlling routers and switches
- Basic Capabilities:
 - Define and query the routing table
 - Intercept and modify packets
 - Query routers and switches for statistics about the network

OpenFlow

• The basic architecture

Flow Table

- Each switch maintains a **Flow Table**³
- Flow tables contain entries (flows) of the form: <Header Fields | Counters | Actions>
 - Packets are matched against header fields
 - Counters are then **updated** based on the matching packet
 - Actions are then **applied** to packets

Matching

- Matching Fields
 - \circ Ingress Port
 - \circ Ethernet source/destination address
 - Ethernet type
 - VLAN id/priority
 - IP source/destination address
 - \circ IP protocol/ToS
 - Transport source/destination port
- Fields can be partially matched (e.g. IP subnets) or wild carded

Counters

- If a packet matches a flow entry it can update the relevant counters.
- Counters can be maintained:
 - Per table
 - \circ Per flow
 - Per queue
- Counters can track:
 - Received packets
 - Received bytes
 - o Duration

- **Transmitted Packets**
- Transmit/Receive errors
- Etc..

Ο

Ο

Actions

- After matching a packet the switch can apply the following actions:
 - Forward out of a port(s)
 - $\,\circ\,$ Encapsulate and send to controller
 - Drop packets
 - \circ Modify packet headers

Controller

- The controller is connected to the switch, through the OpenFlow communication protocol it can query and modify counters and the flow table
- It can also receive packets from the data plane
- The controller can be any arbitrary program that uses the OpenFlow protocol
 - NOX/POX Maestro
 - o Beacon o Ryu
 - \circ Floodlight \circ and others

OpenFlow

• Does OpenFlow by itself give us SDN?

- But why would it?
- You don't expect x86 to have merge sort right out of the box

So, what's the point?

- OpenFlow gives unified specifications
 - Any hardware vendor can support it
 - Any 3rd party software vendor can write software for it
- IOS, JunOS and Application Fluent Network provide hardware specific solutions
- As OpenFlow adoption increases the incentive for vendors to support OpenFlow increases

People using OpenFlow

- OpenFlow is currently used in all of Google's data centers¹
- Almost all the big names are members of the Open Networking Foundation²
 - Google
 - Facebook
 - Verizon
 - Cisco
 - Samsung
 - Broadcom
 - etc...

How do we Realize SDN Using OpenFlow?

- OpenFlow provides network control, but at a low level
- We still need proper abstractions and centralized control

Centralized Control

- Real systems are globally distributed
- Large systems have to account for failure
- We need one logical controller with a global view of the network
- This requires coordination between physical servers distributed geographically

Proper Abstractions

- Once we have a distributed controller we need the ability to install the configuration on the network
- Control policies should be specified at a high level, they should not be dependent on the state of the network

Proper Abstractions

Abstract Network View

Control Program

Global Network View

Network Operating System

Source: Scott Shenker

- Load balancing using OpenFlow
- Clients are directed to different webservers by the controller
- A program connected to the controller can specify access control for specific IPs

Abstract Network Layout Controller Switch WiFi Client 1 Server 1 Server 5 WiFi Client n . . .

- Get out your laptop/phone and connect to the open network named '**OpenFlow**'
- In your web browser go to http://192.168.0.1/
- To be reassigned to a new server, wait 15 seconds and refresh

Bibliography

1:

http://searchsdn.techtarget.com/news/2240 181909/Vint-Cerf-At-Google-OpenFlow-nowruns-in-all-data-center-networks

2:

https://www.opennetworking.org/membersh ip/member-listing

• 3: <u>http://www.openflow.org</u>